I eeoneT non IMENTATION PAGE

-. 1 fowr ontadrg dase
0 Reparn, Jubonen ‘”l w. g gw »

AD-A233 134 meamee

$. FEPORT TYPE AND DATES OOVERED
Final 14 125 1991 to 01 Mar 1993

ATMEAMDMSTIE Ada Compiler Validation Summary Report:

Verdix Corporation, VAda-110-6161, Version 6.0.2, DECstation
3100 (Host) to DECstation 3100 (Target), 900228W1.11001

S AUTHON(S)
Wright-Patterson AFB, Dayton. OH
USA

§ RINDING N\RBERS

7mmmnwm

Ada Validation' Facility, Language Control Facility ASD/SCEL :
Bldg. 676, Rm 135

Wright-Patterson AFB

Dayton, OH 45433

& PERFOAMING ORGANIZA
R PORT NAIEE A LZATION

AVF-VSR-363.0191

0. SPONSORNG/MONITORING AGENCY MAME (S) AND ADDRESS(ES)
Ada Joint Program Office
United States Department of Defense

10. SPONSORINGAMONITORING AGENCY
REPORT MR4BE R

. APVLEMENTARY NOTES

138 DSTRBUTIONAVALABLITY STATEMENT
Approveq for public release; distribution unlimited.

128, DISTRSBUTION COCE

13. ABSTRACT Macivem 200 weres)

3100 (Host to-Target), ACVC 1.11.

Verdix Corporation, VAda-110-6161, Version 6.0.2, Wright-Patterson AFB, OH, DECstation

‘ DTIC
“LECTEfz
MAR2 S HQU‘

W.UBECTTEMS Ada programming language, Ada Compiler Validation
Summary Report, Ada Compiler Validation Capability, Validation

Testing, Ada Validation Office, Ada Validarion Facility, ANSI/MIL-

18. PRICE COOE

iég 1;1;91 Ada Joint Program Office
7 REPORT "crruunuz

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

19, ae LUHTTY LLASSH
OF ABSTR:CT RATIN

20, UITATICN OF ABSTRACT

MEN T340-01-290-8500

-

01 2

=an Forn &3 3, . &8V
mgdw Ve) ’; »
P 23]

16 123

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 28 February 1990.

Compiler Name and Version: VAda-110-6161, Version 6.0.2
Host Computer System: DECstation 3100, ULTRIX 3.1
Target Computer System: DECstation 3100, ULTRIX 3.1

Customer Agreement Number: 90-01-15-VRX

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900228W1.11001 ig awarded to Verdix Corporation. This certificate expires
on 1 March 1993.

This report has been reviewved and is approved.

2 -'7/
<& Bt AP .
Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Vright-Patterson AFB 0H 45433-6503

-

Ada Validation Organization

Director, Computer & Software Engineering Division

Institute for Defense Analyses Accession PFor L
Alexandria VA 22311 NTIS GRA&I &
DTIC TAB O
Unannounced O
g : F 3 :Z / Justification— . _ |
Ada Joint Program Office By
Dr. John Solomond, Director ' | Distribution/
Department of Defense Avatlability Cod
Washington DC 20301 ——- . tty Codes
N Ava'l and/or
/ ~\, [p1st Special
(o WY) l l
b SGMILD ﬁ’
§

AVF Control Number: AVF-VSR-363.0191
16 January 91
90-01-15-VRX

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 900228%1.11001
Verdix Corporation
VAda-110-6161, Version 6.0.2
DECstation 3100 => DECstation 31CO

Prepared By:
Ada Validation Facility
ASD/SCEL
Vright-Patterson AFB OH 45433-6503

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customear: Verdix Corporation
Ada Validation Facility: ASD/SCEL, Vright-Patterson AFB O 45433-6503
ACVC Version: 1.11
Ada Implementation:

Compiler Name and Version: VAda-110-6161, Version 6.0.2

Host Computer System: DECstation 3100, ULTRIX 3.1

Target Computar System: DECstation 3100, ULTRIX 3.1

Customer’s Declaration

I, the undersigned, representing Verdix Corporation, declare that Verdix
Corporation has no knovledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration. I declare that the Verdix Corporation is the owner of the

above Implementation and the certificates shall be awarded in the name of
the owner’s corporate name.

5%&)94'* SO@/PW\L Date: &_Z.?. '7’/70

Stephen Zeiglet /
Verdix Corpotatioﬂ?cmp”w(
1600 NV Compton Drive

Suite 357

Beaverton, Oregon 97006

—

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES . . ¢« ¢« « + « o + &
ACVC TEST CLASSES
DEFINITION OF TERMS . . .

IMPLEMENTATION DEPENDENCIES
VITHDRAWN TESTS
INAPPLICABLE TESTS « « « + « &
TEST MODIFICATIONS
PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS . . .
TEST EXECUTION . . . « « . « &

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

.

.
.

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according te the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83} using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. . A detailed description of the ACVC may be found in the current:
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552).. The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all staiements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available %o the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which perfcrmed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION
1.2 REPERENCES

[{Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIiL-STD-1815A, February 1983 and IS0 -1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990. :

[UG89] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to vhich it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a ser of Identity functions used to defeat some compiler
optimizations alloved by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CBECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This tehavior is
also verified.

Class L tests check that an Ada implementation correctly detects viclation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 aand [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AV?)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executablz form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-vritten or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
severali inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corpoerate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for
vhich validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada impiementation.

1s0 International Organization for Standardization.

Operating Softvare that controls the execution of programs and that
System provides services such as resource allocation; scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, hut partial or
complete hardvare implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementatinn that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada ccmpiler to
the Ada programming language and of issuing a certificate
for this implementation.

Vithdrawn A test found to be incorrect and not used in conformity

test testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 VITHDRAWN TESTS

The folloving tests have been withdrawn by the AVO. The rationale for
vithdraving each test is available from 2ither the AVO or the AVF. The
publication date for this list of withdrawn tests is 31 January 1990.

BE28005C B41308B C45114A C45612B C45651A C46022A
B49008A A74006A B83022B B830228 B83025B B83023D
8830268 C83026A C83041A C97116A BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201B BD3002A
BD800AC CD9005A CD9005B CDA201E CE2107X CE2119B
CE3111C CE3118A CE3411B CE3412B CE3812A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives vhich are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests vere determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as

appropriate.

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

C35706L..Y (14 tests) C35707L..Y (14 tests)

C35708L..Y (14 tests) C35802L..Z (15 tests)
2-1

IMPLEMENTATION DEPENDENCIES

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..2Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

The folloving 21 tests check for the predefined type LONG_INTEGER:

€35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C €45613C €45614C C45631C C45632C
B52004D C55B07A B53B09C B86001W €86006C
CD7101F

€35702B, C35713C, B86001U, and C86006G check for the predefined type
LONG_FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT.

A35801E checks that FLOAT'FIRST..FLOAT’LAST may be used as a range
constraint in a floating-point type declaration; for this implementation
that range exceeds the safe numbers and must pe rejected. (See section
2.3)

C45346A chacks that NUMERIC ERROR is not raised if the length of the
result of catenation exceeds INTEGER’LAST or SYSTEM.MAX INT and that
CONSTRAINT ERROR or STORAGE_ERROR is raised instead.
NUMERIC/CONSTRAINT ERROR vas raised vhen an array of length
INTEGER’LAST/2 + 1 vas declared.

CA5531M..P (4 tests) and C45532M..P (4 tests) use a value for
SYSTEM.MAX MANTISSA of 47 or greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOVWS is PALSE for floating point types; for this
implementation, MACHINE OVERFLOVWS is TRUE.

C86001F reccmpiles package SYSTZIM, making package TEXT_ IO, and hence
package REPORT, obsolete. For this implementation, the package TEXT_IO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATIC!N'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2AB4A, CD2AB4E, CDZAB4I..J (2 tests), and CD2AB40 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

The tests listed in the folloving table are not applicable because the
given file operations are supported for the given combination of mede

and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL_IO
CE2102E CREATE ouT FILE SEQUENTIAL 10
CE2102F CREATE INOUT_FILE DIRECT_ IO
CE2102I CREATE IN FILE DIRECT_I0
CE2102J CREATE ouT PILE DIRECT_I0
CE2102N OPEN IN FILE SEQUENTIAL_IO
CE21020 RESET IN FILE SEQUENTIAL”iv
CE2102? OPEN ouT_PILE SEQUENTIAL_JQ
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INOUT_FILE DIRECT_IO
CB2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN_FILE DIRECT_IO
CB2102U RESET IN FILE DIRECT_IO
CE2102V OPEN ouT FILE DIRECT_IO
CE2102V RESET OUT_FILE DIRECT_I0
CE3102E CREATE IN_FILE TEXT_I0
CE3102F RESET . Any Mode TEXT_I10
CE3102G6 DELETE ~ -=--=—-- TEXT_I0
CE31021 CREATE OUT FILE TEXT_I0
CE3102J OPEN IN FILE TEXT_10
CE3102K OPEN ouT_FILE TEXT_I0

CE2203A and CE2403A check that WRITE raises USE ERROR if the capacity of
the cxternel file is exceeded, for SEQUENTIAL I0 and DIRECT_IO
respectively. This implementation cannot restrict file capacity.

CE3304A checks that USE_ERROR is raised if a call to SET_LINE LENGTH or
SET_PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either

line length or page length.

CE3413B checks that PAGE raises LAYOUT _ERROR vhen the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT’LAST is greater than 150000 making the checking of this objective

impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) vere required for 22 tests.

The tolloving tests were split into two or more tests because this
implementation did not report the violatiosns of the Ada Standard in thz way

expected by the original tests.

IMPLEMENTATION DEPENDENCIES

B24009A B33301B B38003A B38003B B38009a B38009B
B85008G B85008H BC1393F BC30035B BD2B03A BD2D0O3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLCAT’FIRST..FLOAT’LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CD1009A, CD10091I, CD1CO3A, CD2AZ2J, CD2A24A, and CD2A31A..C (3 tests) use
ingtantiations of the support procedure Length_Check, which uses

Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instantiations of Length Check--i.e., the alloved Report.Failed messages
have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE_ID> FAILED."

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Steve Hodges

Verdix Corporation

14130-A Sully Field Circle
Chantilly, VA 22021

For a point of contact for sales information about this Ada implementation
system, see:

Steve Hodges

Verdix Corporation

14130-A Sully Field Circle
Chantilly, VA 22021

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
othervise, the Ada Implementation fails the ACVC {Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3836

b) Total Number of Withdrawn Tests 60
¢) Processed Inapplicable Tests 73
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

£f) Total Number of Inapplicable Tests 274 (c+dre)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/0 tests of the test suite veve processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. VWhen this compiler vas tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. WVhen this compiler wvas
tested, the tests listed in section 2.1 had been wvithdrawn because of test
errors. The AVF determined that 274 tests vere inapplicable to this
implementation. All inapplicable tests vere processed during validation
testing except for 201 executable tests that use floating-point precision
excseding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) wvas
taken on-site by the validation team for processing. The contents of the
magnetic tape were not loaded directly onto the host computer. The tape
vas loaded onto a Sun Vorkstation and the tests vere copied over Ethernet
to the host machine.

After the test files were loaded onto the host computer, the full set of
tests vas processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
revieved by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

- Suppress generation of warning messages.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UGB9]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, vhere "V" represents the maximum input-line

length.
Macro Parameter Macro Value
$BIG_ID1 (1..V-1 «> A7, V => '1")
$BIG_ID2 - (1..V=1 => fAY, V> 127)
$BIG_ID3 (1..V/2 => 'A’) & '3’ &
. (1..V-1.V/2 => 'A’)
$BIG_ID4 (1..V/2 «> 'A’) & '4' &
(1..V-1-V/2 => 'A’)
SBIG_INT_LIT (1..V=3 => ’0’) & "298"
$BIG_REAL LIT (1..V-5 «> ’0') & "69.0E1"
$BIG_STRING1 e & (1..V/2 => 'A*) & '
$BIG_STRING2 e & (1..V=-1-V/2 => ‘A’) & "1 & '
$BLANKS (1..V-20 =>)

$MAX_LEN_INT_BASED LITERAL ,
"2:" & (1..V-5 => 70’) & "11:"

$MAX_LEN REAL_BASED_LITERAL
"16:" & (1..V-7 => '0’) & "F.E:"

SMAX STRING_LITERAL '"’' & (1..V-2 => ’A’) & "'

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
SMAX IN LEN 499
SACC_SIZE 32 .
SALIGNMENT 4
SCOUNT_LAST 2_147_483_647

SDEFAULT_MEM_SIZE 16_777_216
SDEFAULT_STOR_UNIT 8
SDEFAULT_SYS_NAME DEC_RISC

$DELTA_DOC 0.0000000004656A12873077392578125
$ENTRY_ADDRESS SYSTEM. "+" (164A#)

$ENTRY_ADDRESS1 SYSTEM."+"(164B#)

SENTRY_ADDRESS2 SYSTEM."+"(164C#)

SPIELD_LAST 2_147_483_647

SFILE_TERMINATOR '

SFIXED_NAME NO_SUCH_TYPE

SFLOAT_NAME NO_SUCH_TYPE

SPORM_STRING e

$SPORM_STRING2 "CANNOT_RESTRICT_FILE_CAPACITY"

$GREATER_THAN_DURATION
100_000.0

SGREATER_THAN DURATION BASE LAST
To_000_000.0

$GREATER_THAN_FLOAT BASE_LAST
1.8E+308

SGREATER_THAN FLOAT SAFE_LARGE
5.0E307

$GREATER_THAN_SHORT FLOAT_SAFE_LARGE

A-2

MACRO PARAMETERS

9.0E37
SHIGH_PRIORITY 99

SILLEGAQ_EXTERNAL_PILE NAME1
%/1llegal/file_name/2}]%2102C.DAT"

$ILLEGAL_EXTERNAL FILE NAME2
#/illegal/file_name/CE2102C*.DAT"

SINAPPROPRIATE_LINE_LENGTH
-1

SINAPPROPRIATE_PAGE_LENGTH
-1
SINCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")

SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")

SINTEGER_FIRST -2_147_483_648

SINTEGER_LAST 2_147_483_647

SINTEGER_IAST_PLUS_1
SINTERFACE_LANGUAGE
SLESS_THAN_DURATION

2_147_483_648
c
-100_000.0

SLESS_THAN_DURATION_BASE_ FIRST

SLINE_TERMINATOR
SLOV_PRIORITY

-15_000_000.0
ASCII.LF & ASCII.FF
0

$MACHINE_CODE_STATEMENT

$MACHINE_CODE_TYPE
SMANTISSA_DOC
$MAX_DIGITS
$MAX_INT
$MAX_INT_PLUS_1
SMIN_INT

SNAME

CODE_0’ (OP => NOP);
CODE_0

31

15

2_147_483_647
2_147_483_648
-2_147_483_648
TINY_INTEGER

A-3

MACRO PARAMETERS

$NAME_LIST
SNAME_SPECIFICATION1
SNAME_SPECIFICATION2
$NAME_SPECIFICATION3
SNEG_BASED_INT
SNEV_MEM_SIZE
SNEW_STOR_UNIT
SNEV_SYS_NAME
$PAGE_TERMINATOR
SRECORD_DEFINITION
SRECORD_NAME
STASK_SIZE
$TASK_STORAGE_SIZE
STICK
SVARIABLE_ADDRESS
SVARIABLE_ADDRESS1
SVARIABLE ADDRESS2
SYOUR_PRAGMA

DEC_RISC
/usr/validation/tests/c/e/X2120A
/usr/validation/tests/c/e/X2120B
/usr/validation/tests/c/e/X3119A
164#FFFFFFFD#

16_777_216

8

DEC_RISC

ASCII.FF

RECORD SUBP: OPERAND; END RECORD;
CODE_0

32

1024

0.01

VAR_1’ADDRESS

VAR_2’ADDRESS

VAR_3'ADDRESS

PASSIVE

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler cptions of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwvise, references in this appendix are to compiler documentation and
not to this report.

B-1

ada

ada - Ada compiler

Syntax
ada [options] (source_file)... [linker_cptons) (obfect file.o0}...
Options

~# identfier type value (define) Define an identifier of a specified type and value. See

-a flle_name

-DGQ
-d

-E flle
-8 directory

~Elflle
-El directory

-K

-L library name

-¥le_atbreviation

Chapter 10, VADS ADA PREPROCESSOR REFERENCE.

(archive) Treat file_name as an object archive flle created by ar.
Since some archive files end with .a, -a is used to distinguish
archive files from Ada source files,

Write out the gnrx. b flle in ASCIL.

(dependencies) Anaiyze for dependencies only. .Do not do
semantic analysis or code generation. Update the library, marking
any dafined units as uncompiled. The -d option is used by a.make
to establish dependencies among new flles.

(error) Procass compilation emror messages using 2.erTor and send
It to standard output. Only the source Iines containing emrors are
listed. Only one -¢ or -E option shouid be used.

(error output) Without 3 file or directory argument, ada processes
ITOr Messages using a.efror and directs a brief output to standard
output; the raw error messages are left in ada_source.er. If a file
pathname is given, the raw sror messages are placed in that file.
It & directory argument is supplied, the raw error output is placed in
dir/sourcs.err. The fil@ Of raw &ror messages can be used as input
o a.error. Only ona -¢ or - option should be used.

(error listing) Imersperse eor Messages among source lines and
direct to standard output,

(eeror listing) Same as the -E cption, excert that source lisiing with
oTors is proguced.

{error vi(1)) Procass symtax eror messages using a.efror, embed
them in the souce file, and call the enveonment editor
ERROR_EDITOR. (it ERROR_EDITOR is defined, he envirorrment
variable ERROR_PATTERN shouid aiso be defined.
ERROR_PATTERN is an editor search command that iocates the
first occuTanca of i’ in the error flle.) If no editor ts specified, vi(1)
is invoked,

(keep) Keep the intermediate lanquage (IL) file procduced by the
compiier fromt end. The IL flle will be placed int he .objects
directory, with the file name Ada_sourced v

(iibrary) Operaie in VADS library !ibrary_name (the curent werking
directory is the cefautt).

(library search) This is an option passed to the UNIX linker, 1d(1)

teiling it 10 searcn the specified library fila. (No space between the
-} and the file aboreviation.)

=M unit_name

-M source_file

-0 (-xecutabie_flle

-0[0-5]

-P
-R VADS _library

-T

ada

For a description of the file abbreviations, sse aiso Operating
systam documentistion, id(1).

(main) Producs an executable program by linking the named unit as
e Main program. unft_name must alresdy becompiled. it must be
either a parametieriess procedure or & parameteriess function:
etuming an integer. The executable program will be named a.out:
uniess overridcen with the -0 option.

(main) Produce an exscutable program by compiling and linking
source_lle. The main unit of the program is assumnad to be the roat
name of the .a file (Tor 100.a the unit is foo). Orly one .a file may be
preceded by -M. The executable program wil be named a.out
uniess overridden with the -0 option.

(outpun) This option is to be used in conjunctionwith the -M option.
executable_flle is the name of the executable raher than the default

a.out

(optimize) invoke the code optimizer (OPTIM3). An optional digit
(here is no space befors the digit) provides the level of
optimization. The defautt is -0O4.

-0 fui! optimization

=00 prevents optimization

=01 no hoisting

=02 no hoisting but more passes

Q3 no hoisting but even more passes

=04 hoisting from loops

=08 hoisting from I0ops Dt Mmore passes

06 hoisting from loops with maximeusm passes

-Q7 hoisting from loops and trenches

-08 hotsting from loops anxd branches, mMore
passes

=09 hoisting from icops and branches, maximum.
passes

Hoisting from Dranches (and cases altemnatives) can be sicw and

does Nt aiweys provide significant perforrmance Gains se it can be

suppressed.

For more information about optimization, see COMPILING ADA

PROGRAMS, Complier Optimizations on page UG 4-3 . See aiso

pragma OPTWMZE_CODE(OFF) on page PG F—4.

invoke e Ada Preprocessor. See Chapler 10, VADS ADA

PREPROCESSOR REFERENCE.

(recompile instantigtion) Force analysis of afl generic instantiations,

CausSIng renstantistion of any Niat are out of dale.

(suppress) Apply pragma SUPPRESS to the entre compllation for

il suppressidie checks. (See aiso pragma

SUPPRESS{ALL_CHECKS) on page PG -3

(timing) Print timing Yormation for the compilation.

B-}

ada
-y : (verbose) Print compiler version number, dste and time of
compiistion, name of file compiled, command input line, total
compilation time, and amor summary line. Storage usage
information about the cbject flle Is provided. With OPTIM3 the
output format of compression (the size of optimized instuctions) is
88 & percantage of iInput (Unoptimized instructions).
-w (wamings) Suppress waming diagnostics.
Description

The command ada executes the Ada complier and compiles the named Ada source file, ancing with
the .a suffix. The file must reside in 4 VADS library directory. The ada.iid file in this directory is modified
after each Ada unit is compiled.

By defauit, ada produces only object and net flies. if the -M option Is usad, the compller automatically
invokes aid and builds a compiate program with the named library unit as the main program.

Non-Ada object files (.0 filas produced Dy & compiler for another language) may be given as
arguments to ada. These flies will be passed on to the linker and will be linked with the spectfied Aca
object files.

Command line cptions may be specified in any crder, but the order of compiiation and the order of
the files t0 be passed {0 the linker can be significant.

Several VADS compilers may be simuitaneously available on a single systam. Because the ada
command in any VADS _jocation/bin on & system will execute tha comect compiier components based
upon visibie library directives, the option -sh is provided to prirt the name ¢f the components actuaily
exacuted.

Program listings with a disassembly of machine cods instructions are gsnerated by a.db or a.das.

See aiso a.das 7 paye UG 8-6; a.dd on page UG 8-7; a.error on page UG 8-10; &.ld on page
UG 8~-14; a.mkild on page UG 8-21; and Operating Systein reference documnentation for the 1d(1)

utility.
Diagnostics

The diagnostics procduced by the VADS compiler are intended to be seif-explanatory. Most refer (0
the RM. Each RM refarence inciudes a section number and optionaily, a paragraph number enciosad

in parentheses.

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to linker documentation snd not
to this report.

B-5

a.ld

a.ld — prelinker

Syntax
a.13 (options] unit_name (Id_optons)

Description

a.ld collects e object 1les necded to make unt_narsne 8 Main program and cails the UNIX linker id1)
10 link together ail Ada and other language ovjects required to produce an executabie image in s.out.
unit_name is the Main program and must Name a non-generic SUbprogram. it unit_name is a function,
it Must retum a vaiue of e type STANDARD.INTEGER. This integer resuit wili be passed back o the
UNIX sheil as the status code of the execution. The utility uses the net files produced by the Ada
compiler to check dependency inforrmation. ald procuces an exception mapping table and a unit
elaboration table and passes this information to the linker.

a.)d reads instructions for generating executadles from he ada.lld file in the VADS libraries on the
search list. Besides information generated by the compiler, thess directives aiso include WiTH»
directives tat allow the automatic linking of cbject mocules compiled from other languages or Ada
object modules nct named in context clauses in the Ada sourcse. Any nurmnber of WITHA directives may
be piacad into a library, it they must be numbered contiquousily beginning at WITH1. The directives
are recored in the library’s ada. ity file and have the following form.

WITM1:LINK:object_file:
WITH2:LINK:archive_file:

WITHn directives may be placed in the local Ada libraries or In any VADS !ibrary on the search list.

A WITHn directive in a local VADS library or sartier on the library search list wili hide the same
numbered WITHn directive in a library |ster in the |ibrary search list.

Use the too! a.info to change of report library directives in the cument library.

All arguments after unit_name are passed on to the linker. These Mmay be options for it, archive libraries,
library abbreviations, or cbject files.

VADS location/birvald is a wrapper program that executes the comect executeble based upon
directives visible in he ada.md file. This permits mutticte VADS compilers 10 exist on the same host.
The -sh option prirts the name of the actual exocutadie file.

Options

-DX (cebug) Debug memory overfiow (Use in cases where linking a large
number of uNits Causes e eror Message “local symboi overfiow”
to ocawr).

-8 urvt_nerme (elaborate) Elaborate unit_name as early in ine slaboration order as
possible.

- (Nes) Print a list of dependent flles in order and SupPPress linking.

=L library_nuarme (library) Operate n VADS liteary library_name (the curment working
directory is the cefautt).

-0 executabie flle {output) Use he specified file name as b @ name of the output rather
than he detauR, a.out.

-sh (show) Dispiay the name of the (ool exscutabie but do Not exscute
n

B-s

a.ld

{units) Print a list of depencent units in order and suppress linking.

-U

-y (verbosae) Print the linker command befors executing it.

-V {vexity) Print the linker command but suppress execution.
Files

a.out default outpist file

nets Ada DIANA net files directory

.objects/* Ada object fiiles

VADS_location/standard/* startup and standard library routines
See sleo Operating system docunonrwon (1),

Diagnostics

Sel-explanatory diagnostics are produced for missing files, etc. Owwow additional messages
are procuced by the linker.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowved
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted othervise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY INTEGER is range -128 .. 127;

type FLOAT is digits 15 range
~1640.1FFFF7FFFFFFFF# .. 16#0.1FFFFFFFFFFFFF#;
type SHORT FLOAT is digits 6 range -16%#0.FFFFFF¥ .. 1640.FFFFFF#;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

e

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINE_ONLY Pragma

The INLINE_ONLY pragma, when used in the same way as pragma INLINE, indicates to the compiler
that the subprogram must always be inlined This pragma also suppresses the generation of a callable
version of the routine which saves code space. If a user erroneously makes an INLINE_ONLY subpro-
gram recursive a warning message will be emited and an PROGRAM_ERROR will be raised at run
ume.

12. BUILT_IN Pragms

The BUILT_IN pragma is used in the implementation of some predefined Ada packages, but provides
no user access. It is used only 10 implement code bodies for which no actual Aca body can be pro-
vided, for example the MACHINE_CODE package.

13. SHARE_CODE Pragms

The SHARE_CODE pragma takes the name of a generic instantiation or 2 generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit

When the first argument is a generic unit the pragma applies (o all inszntiations of that generic. When
the first argument is the name of a generic instantation the pragma applies only to the specified instan-
tiagon, or overloaded instandations.

If the second argument is TRUE the compiler will try o share code generated for a generic instantia-
tion with code generated for other instantiations of the same generic. When the second argument is
FALSE each insuntiation will get 8 unique copy of the generated code. The extent to which code is
shmdbaweenmnmmmdepmdsmﬂmpnammdmehndofgmcfamﬂpmnewn
declared for the generic unit.

The name pragma SHARE_BODY is also recognized by the implementation and has the same effect as
SHARE_CODE. It is included for compatability with earlier versions of VADS,

1.4. NO_IMAGE Pragma

The pragma suppresses the generation of the image array used for the IMAGE auribute of enumeration
types. This eliminates the overhead required to store the array in the executable image. An agempt o
use the IMAGE auribute on a type whose image array has been suppressed will resuit in a compilation
waming and PROGRAM_ERROR raised at run time.

1.S. EXTERNAL_NAME Pragma
TheEXTERNALNAMEpmgmukummmeo!asubpmmmorvambledeﬁnedmAdnand
allows the user 10 specify a different external name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specificadon.

1.6. INTERFACE_NAME Pragma

The INTERFACE_NAME pragma takes the name of a a variable or subprogram defined in another
language and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the
variable or subprogram name with an external reference (o the second, link_argument. The pragma is
allowed at the place of a declarative item in a package specificadon and must apply to an object or sub-
program declared earlier in the same package specificaton. The object must be declared as a scalar or
an access type. The object cannot be any of the following:

a kop variable,

a constant,

an initialized variable,

an array, or

a record.

1.7. IMPLICIT_CODE Pragma

Takes one of the idenufiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is
ON. :

13. OPTIMIZE_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies whether the code should be opumized by the compiler. The
default is ON. When OFF is specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas
2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect.

22. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RML

23. INLINE v
This pragma is implemented as described in Appendix B of the Ada RM.

24. INTERFACE

This pragma supports calls o 'C* and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode DN. Record and array
objects can be passed by reference using the ADDRESS auribute.

+5. LINK_WITH

Can be used 10 pass arguments to the target linker. It may appear in any declarative part and accepts
one argument, 8 conswmnt string expression. This argument is passed to the target linker whenever the
unit conwining the pragma is included in a link.

2.6. LIST

This pragma 'is implemented as described in Appendix B of the Ada RM.

2.7. MEMORY_SIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

23. NON_REENTRANT

This pragma takes one argument which can be the name of either a library subprogram or a subprogram
declared immediately within a library package spec or body. It indicates o the compiler that the sub-
program will not be called recursively allowing the compiler 1o perform specific optimizations. The
pragma can be applied to a subprogram or a set of overloacded subprograsm within 2 package spec or
package body. .

29. NOT_ELABORATED

This pragma can only appear in a library package specification. It indicates that the package will not
be elaborated because it is either part of the RTS, a configuration package or an Ada packags that is
referenced from a language other than Ada. The presence of this pragma suppresses the generation of
elaboration code and issues warnings if elaboration code is required.

2.10. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

2.11. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. It will
not causes objects to be packed at the bit level.

2.12. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.13. PASSIVE
The pragma has three forms :

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <wumber>);

This pragma Pragma passive can be applied 10 a task or task type declared immediately within a library
package spec or body. The pragma directs the compiler 10 optimize ceruain tasking operations. It is
possible that the statements in a task body will prevent the intended optimization, in these cases a wam-
ing will be generated at compile time and will raise TASKING_ERROR at runtime.

2.14. PRIORITY
This pragma is implemented as described in Appendix B of the Ada RM.

2.15. SHARED
This pragma is recognized by the implementation but has no effect.

2.16. STORAGE_UNIT
This pragma is recognized by the implementation. The implementation does not allow SYSTEM w be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.17. SUPPRESS
This pragn;a is implemented as described, except that DIVISION_CHECK and in some cases
OVERFLOW_CHECK cannot be supressed.

.

218. SYSTEM_NAME

This pragma is recognized by the implementation. The implementztion does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. P'REF
For a prefix that denotes an object, a program unit, a label, or an entry:

This arribute denotes the effective address of the first of the storage units allocated to P. For 2 subpro-
gram, package, task unit, or label, it refers 10 the address of the machine code associated with the
comresponding body or statement. For an entry for which an address clause hae been given, it refers o
the corresponding hardware interrupt. The atribute is of the type OPERAND defined in the package
MACHINE_CODE. The aaribute is only allowed within a machine code procedure. :

See section F.4.8 for more information on the use of this atmribute.

(For 2 package, task unit, or entry, the "REF atribute is not supported.)

32. T'TASKID

For a task object or 2 value T, TTASK_ID yields the unique task id associated with a task. The value
of this atrribute is of the type ADDRESS in the package SYSTEM.

4. Specification Of Package SYSTEM

with UNSIQMEED _TYPRS:
peshage SYSTEA is

pragmm SUPPRESS({ALL CHECXS):
progme SUFP/RES S (XCEPTION I _TARLAS) :
pragme NOT_IDABCRATED:

type NG is (dus_rive);

SYSTIM_NAVG : sesutent NG :o doe_rise;
STORACR UNTT i semstant e §;
ooy 3128 : sowstant te 16777 _218;

+« Sysiam-Dopasdent Nammd Numbero

»M¥_INT 1 semstent 1w .3 147 493 648
o) t semstant :w 3 147 _483 _647;

MAX_DIGITS : senstans e 13;

MAX MANTISSA : eemsteml 1w 31:

rind_DRLTA : sewstant 1@ 1.00°(.31);

TICX : semsiamt 18 9.01:

<« Other Systeme-dopondent Duelarations

ssbtype PRIORITY io INTRCER range O .. 99:
MAX REC SIZR : isteger e $4°1024;

type ACDRESS iv privete;

fasetion “>° (A: AUORRSY; B: ALXMESS) retnra BOOLRAN:
(spstion *<¢° (A: ACORESS; §: ALDRISS) retsrn BOOLAAN:
fusstion *>a°(A: AXRESS: B: ACDRESI) retars BOCLEAANM:
fumstion *<n’{A: ACORESS; B: ACDRESS) retnrs SOOLRAN:
fsmstion *.* (A: AMIRESS: B: ACDRELIL) return INTROER:
fasetion *p° (A: MXBESS: [: INTIGER) retera ALDRASS:
fsastiow °-° (A: ACDRESS; [: INTECER) retura ADDRESS:
fesstion *¢* (1: UNSIGNED TYPRS .UNSIGMED INTRORR) returs ADDPLIS:

fenetion MMERY ACTRAS
(1: umacb TYHJ UNSIONED_ INTBCER) retars ALDRASS rencmms o

ro_m : semstans ALIRESS:

C-5

1ype TASK ID o privese:
NO_TASK_ID : sesstant TASK ID;

sype PROCRAM ID is privete:
NO_PROCRAM D : constans PROCRAM_ID;

private
type ALKRISS is sew UNSIONED TYPRS.UNSIONED_INTSGER:
NO_ALDR : cossisnt ADDRASS :e O
peagm BUILT IN(*>°*);
propm BUILT IN(*<“):
pragm BUILT_IN(°>e*);
progme BUILT IN(°«<=®);
progme BUILT IN(®-.°):
progmm MUILT_IN(°¢°);

type TASK D is sew UNSIONED TYPES.UNSICGNED INTECER:
ID_TMI.IB : semstast TAll_lﬁ e

type PROCRAM_ID is sew UNSIGNED_TYPES.UINSICGMED_INTBOMR:
NO_PROGRAM_ 1D : eewscans PROGRAM_ID := 0

esd SYSTER

S. Restrictions On Representation Clauses

S.1. Pragma PACK

In the absence of pragma PACK record components are padded so as to provide for efficient access by
the target hardware, pragma PACK applied 10 a record eliminate the padding where possible. Pragma
PACK has no other effect on the storage allocated for record components a record representation is
required.

5£2. Size Clauses .
For scalar types a representation clause will pack to the number of bits required to represent the range
of the subtype. A size clause applied to a recard type will not cause packing of components; an expli-
cit record representation clause must be given o specify the packing of the components. A size clause
applied 1 a record type will cause packing of components only when the component type is a discrete
type. An error will be issued if there is insufficient space allocated. The SIZE atrribute is not sup-
ported for task, access, or floating point types.

$3. Address Clauses

Address clauses are only supported for variables. Since defauit iniualization of a variable requires
evaluation of the variable address elaboration ordering requirements prohibit inititalization of a variables
which have address clauses, The specified address indicates the physical address associated with the
variable,

54. Interrupts

Interupt entries are not supparted,

§.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels .
Entries

5.6. Machine Code Insertions
Machine code insertions are supported.

The general definiton of the package MACHINE_CODE provides an assembly language interface for
the arget machine, It provides the necessary record type(s) needed in the code statement, an enumera-
tion type of all the opcode mneumonics, a set of register definitions, and a set of addressing mode func-
tions.

The general syntax of a machine code statement is as follows:
CODE_n'(opcode, operand {, operand));
where a indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.
The format is as follows:

CODE_N'(opcode, (operand (, operand)));
For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)).
CODE_0"(op => opcode);
The opcode must be an enumeration literal (i.e. it cannot be an object, aurioute, or a rename).
An operand can only be an entity defined in MACHINE_CODE or the 'REF auribute.

The arguments to any of the functions defined in MACHINE_CODE must be static expressions, swring
literals, or the finctions defined in MACHINE_CODE. The 'REF auribute may not be used as an argu-
ment in any of these functions.

Inline expansion of machine code procedures is supported.

6. Counventions for Implementstion-generated Names
There are no implementation-generated names.

7. Ioterpretation of Expressions in Address Clauses
Address expressions in an address clause are interpreted as physical addresses,

8. Restrictions on Unchecked Coanversions
None.

9. Restrictions on Unchecked Desllocations
None.

10, Implementation Characteristics of /O Packages

Instantiationy of DIRECT IO use the value MAX REC SIZE as the record size (expressed in
STORAGE_UNITS) when “the size of ELEMENT _ TYPE exceeds that value. For example for uncon-
mndmysmhamgwmwmsmuvethge MAX REC SIZE is used
instead. MAXRECORDSIZ‘EudeﬁnedeYSTEMandcanbechangedbyapmgrambefore
insantiating DIRECT_1O ww provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE_UNIT biw. DIRECT_IO will raise USE_ERROR if
MAX REC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL _IO use the value MAX _REC_SIZE as the record size (expressed in
STORAGE UNII'S)whmthemofELEMENTTYPEamumvaluc.Formmple far uncon.
sumnedaxrayssuchassxnngwhmELEMENTTYPESlZE:sveryhrge MAX REC SIZE is used
instead. MAXRECORDSIZExsdcﬁnedeYSTEMandcanbechanged by a program before
instantating INTEGER IO 10 provide an upper limit on the record size. SEQUENTIAL _IO imposes no
limit on MAX_REC_SIZE.

11. Implementation Limits
The following limits are acmally enforced by the impiemenwmaton. It is not intended to imply that
resources up o ar even near these limits are available to every program. :

111. Line Length
The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.

112. Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The maximum
size of a statically sized record type is 4,000,000 x STORAGE_UNIIS. A record type or amay type
declaration that exceeds these limits will generate a waming message.

113. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the main program
is allocated a fixed size suck of 10,240 STORAGE_UNITS. This is the value retumed by
T°'STORAGE_SIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length atrribute the default collection size for an access
type is 100 times the size of the designated type. This is the value reuned by T'STORAGE_SIZE for
an access type T.

11.5. Limit oo Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically within a
compilation unit. If this value is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

